Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hundreds of exoplanets between 1 and 1.8 times the size of Earth have been discovered on close-in orbits. However, these planets show such a diversity in densities that some appear to be made entirely of iron, while others appear to host gaseous envelopes. To test this diversity in composition, we update the masses of five rocky exoplanets (HD 93963 A b, Kepler-10 b, Kepler-100 b, Kepler-407 b, and TOI-1444 b) and present the confirmation of a new planet (TOI-1011) using 187 high-precision radial velocities from Gemini/MAROON-X and Keck/KPF. Our updated planet masses suggest compositions closer to that of Earth than previous literature values for all planets in our sample. In particular, we report that two previously identified “super-Mercuries” (Kepler-100 b and HD 93963 A b) have lower masses that suggest less iron-rich compositions. We then compare the ratio of iron to rock-building species with the abundance ratios of those elements in their host stars. These updated planet compositions do not suggest a steep relationship between planet and host star compositions, contradictory to previous results, and suggest that planets and host stars have similar abundance ratios.more » « lessFree, publicly-accessible full text available July 23, 2026
-
Abstract We report the discovery of TOI-2180 b, a 2.8 M J giant planet orbiting a slightly evolved G5 host star. This planet transited only once in Cycle 2 of the primary Transiting Exoplanet Survey Satellite (TESS) mission. Citizen scientists identified the 24 hr single-transit event shortly after the data were released, allowing a Doppler monitoring campaign with the Automated Planet Finder telescope at Lick Observatory to begin promptly. The radial velocity observations refined the orbital period of TOI-2180 b to be 260.8 ± 0.6 days, revealed an orbital eccentricity of 0.368 ± 0.007, and discovered long-term acceleration from a more distant massive companion. We conducted ground-based photometry from 14 sites spread around the globe in an attempt to detect another transit. Although we did not make a clear transit detection, the nondetections improved the precision of the orbital period. We predict that TESS will likely detect another transit of TOI-2180 b in Sector 48 of its extended mission. We use giant planet structure models to retrieve the bulk heavy-element content of TOI-2180 b. When considered alongside other giant planets with orbital periods over 100 days, we find tentative evidence that the correlation between planet mass and metal enrichment relative to stellar is dependent on orbital properties. Single-transit discoveries like TOI-2180 b highlight the exciting potential of the TESS mission to find planets with long orbital periods and low irradiation fluxes despite the selection biases associated with the transit method.more » « less
An official website of the United States government
